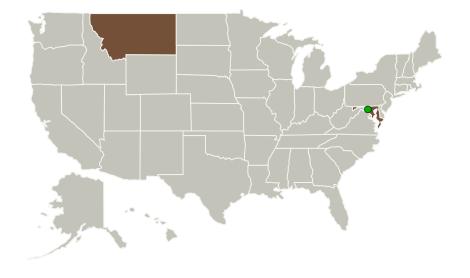
Ridge Waveguide Structures in Magnesium-Doped Lithium Niobate, Phase II



Completed Technology Project (2010 - 2012)

Project Introduction

AdvR, Inc. proposes the development of an efficient process for fabricating ridge waveguides in magnesium-doped lithium niobate (MgO:LN). The effort will include, but will not be limited to, fabricating ridge waveguides in periodically poled MgO:LN for highly efficient, single-pass, quasi phase-matched frequency conversion. Ridge waveguides in MgO:LN will significantly improve the performance (power handling and conversion efficiency), increase photonic component integration, and be well suited to space based applications. The key innovation in this effort is to combine recently available large, high photorefractive damage threshold, z-cut 5% MgO:LN with novel ridge fabrication techniques to achieve high optical power, low cost, high volume manufacturing of frequency conversion structures. The ridge waveguide structure maintains the characteristics of the periodically poled bulk substrate, allowing for the efficient frequency conversion typical of waveguides and the high optical damage threshold and long lifetimes typical of the doped bulk substrate.

Primary U.S. Work Locations and Key Partners

Ridge Waveguide Structures in Magnesium-Doped Lithium Niobate, Phase II

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Ridge Waveguide Structures in Magnesium-Doped Lithium Niobate, Phase II

Completed Technology Project (2010 - 2012)

Organizations Performing Work	Role	Туре	Location
ADVR, Inc.	Lead Organization	Industry	Bozeman, Montana
Goddard Space Flight Center(GSFC)	Supporting	NASA	Greenbelt,
	Organization	Center	Maryland
Montana State	Supporting	Academia	Bozeman,
University - Bozeman	Organization		Montana

Primary U.S. Work Locations	
Maryland	Montana

Project Transitions

August 2010: Project Start

November 2012: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/139408)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

ADVR, Inc.

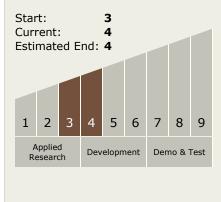
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Todd Hawthorne

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Ridge Waveguide Structures in Magnesium-Doped Lithium Niobate, Phase II

Completed Technology Project (2010 - 2012)

Technology Areas

Primary:

- TX03 Aerospace Power and Energy Storage
 - ☐ TX03.3 Power

 Management and

 Distribution
 - □ TX03.3.3 Electrical Power Conversion and Regulation

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

